钨钼百科  > 所属分类  > 
[0] 评论[0] 编辑

晶体

晶体
海盐晶体 

晶体是原子离子分子按照一定的周期性在空间排列形成在结晶过程中形成具有一定规则的几何外形的固体。晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。

简介
晶体晶体的外观
晶体按其结构粒子和作用力的不同可分为四类:离子晶体原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和准晶体三大类。

具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。

晶体内部结构中的质点(原子离子分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。

晶体按其内部结构可分为七大晶系和14种晶格类型。晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体原子晶体分子晶体金属晶体等四大典型晶体,如食盐金刚石干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。

说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体液体固体。研究表明,固体可分为晶体、非晶体准晶体三大类。

究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。

晶体晶体结构

为了描述晶体的结构,把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。

由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。

吃的盐是氯化钠的结晶,味精谷氨酸钠的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。可以这样说:“熠熠闪光的不一定是晶体,朴实无华、不能闪光的未必就不是晶体”。厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制品也属晶体,就连地上的泥土砂石都是晶体。我们身边的固体物质中,除了常被我们误以为是晶体的玻璃、松香琥珀、珍珠等之外,几乎都是非晶体。晶体离我们并不遥远,它就在日常生活中。

组成晶体的结构粒子(分子、原子、离子)在三维空间有规则地排列在一定的点上,这些点周期性地构成有一定几何形状的无限格子,叫做晶格。按照晶体的现代点阵理论,构成晶体结构的原子、分子或离子都能抽象为几何学上的点。这些没有大小、没有质量、不可分辨的点在空间排布形成的图形叫做点阵,以此表示晶体中结构粒子的排布规律。构成点阵的点叫做阵点,阵点代表的化学内容叫做结构基元。因此,晶格也可以看成点阵上的点所构成的点群集合。对于一个确定的空间点阵,可以按选择的向量将它划分成很多平行六面体,每个平行六面体叫一个单位,并以对称性高、体积小、含点阵点少的单位为其正当格子。晶格就是由这些格子周期性地无限延伸而成的。空间正当格子只有7种形状(对应于7个晶系),14种型式。它们是简单立方、体心立方、面心立方;简单三方;简单六方;简单四方、体心四方;简单正交、底心正交、体心正交、面心正交;简单单斜、底心单斜;简单三斜格子等。晶格的强度由晶格能(或称点)。

晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。

类型介绍

离子晶体 (图)晶体

离子间通过离子键结合形成的晶体。在离子晶体中,阴、阳离子按照一定的格式交替排列,具有一定的几何外形,例如NaCl是正立方体晶体,Na+离子与Cl-离子相间排列,每个Na+离子同时吸引6个Cl离子,每个Cl-离子同时吸引6个Na+。不同的离子晶体,离子的排列方式可能不同,形成的晶体类型也不一定相同。离子晶体中不存在分子,通常根据阴、阳离子的数目比,用化学式表示该物质的组成,如NaCl表示氯化钠晶体中Na+离子与Cl-离子个数比为1∶1,CaCl2表示氯化钙晶体中Ca2+离子与Cl-离子个数比为1∶2。

离子晶体是由阴、阳离子组成的,离子间的相互作用是较强烈的离子键。离子晶体具有较高的熔、沸点,常温呈固态;硬度较大,比较脆,延展性差;在熔融状态或水溶液中易导电;大多数离子晶体易溶于水,并形成水合离子。离子晶体中,若离子半径越小,离子带电荷越多,离子键越强,该物质的熔、沸点一般就越高,例如下列三种物质,其熔沸点由低到高排列的顺序为,KCl<NaCl<MgO。

由正、负离子或正、负离子集团按一定比例组成的晶体称作离子晶体。离子晶体中正、负离子或离子集团在空间排列上具有交替相间的结构特征,离子间的相互作用以库仑静电作用为主导。离子晶体整体上的电中性,决定了晶体中各类正离子带电量总和与负离子带电量总和的绝对值相当,并导致晶体中正、负离子的组成比和电价比等结构因素间有重要的制约关系。离子晶体有二元离子晶体、多元离子晶体与有机离子晶体等类别。几乎所有的盐类和很多金属氧化物晶体都属离子晶体,例如食盐、氟化钙、二氧化钡等。

原子晶体 (图)晶体 相邻原子间以共价键结合而形成的空间网状结构的晶体。凡靠共价键结合而成的晶体统称为原子晶体。例如金刚石晶体,是以一个碳原子为中心,通过共价键连接4个碳原子,形成正四面体的空间结构,每个碳环有6个碳原子组成,所有的C-C键键长为1.55×10-10米,键角为109°28′,键能也都相等,金刚石是典型的原子晶体,熔点高达3550℃,是硬度最大的单质。原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。
分子晶体 (图)晶体

分子间以范德华力相互结合形成的晶体。大多数非金属单质及其形成的化合物如干冰(CO2)、I2、大多数有机物,其固态均为分子晶体。分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。

分子组成的物质,其溶解性遵守“相似相溶”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。

金属晶体 (图)晶体

晶格结点上排列金属原子-离子时所构成的晶体。金属中的原子-离子按金属键结合,因此一般金属晶体有良好的导电性、导热性、延展性和不透光性。

金属键形成的单质晶体。金属单质及一些金属合金都属于金属晶体,例如镁、铝、铁和铜等。金属晶体中存在金属离子(或金属原子)和自由电子,金属离子(或金属原子)总是紧密地堆积在一起,金属离子和自由电子之间存在较强烈的金属键,自由电子在整个晶体中自由运动,金属具有共同的特性,如金属有光泽、不透明,是热和电的良导体,有良好的延展性和机械强度。大多数金属具有较高的熔点和硬度,金属晶体中,金属离子排列越紧密,金属离子的半径越小、离子电荷越高,金属键越强,金属的熔、沸点越高。例如周期系IA族金属由上而下,随着金属离子半径的增大,熔、沸点递减。第三周期金属按Na、Mg、Al顺序,熔沸点递增。

根据中学阶段所学的知识。金属晶体都是金属单质,构成金属晶体的微粒是金属阳离子和自由电子(也就是金属的价电子)。

特征
晶体规则的外形
(1)晶体有整齐规则的几何外形;

(2)晶体有固定的熔点

(3)晶体有各向异性的特点。

固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。

晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。

非晶体是内部质点三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。如玻璃。外形为无规则形状的固体。

基本性质
晶体结构

1、自限性:晶体具有自发形成几何多面体形态的性质,这种性质成为自限性。

2、均一性和异向性:因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。

3、最小内能与稳定性:晶体与同种物质的非晶体、液体、气体比较,具有最小内能。晶体是具有格子构造的固体,其内部质点作规律排列。这种规律排列的质点是质点间的引力与斥力达到平衡,使晶体的各个部分处于位能最低的结果。

共性
晶体晶体
1、长程有序:晶体内部原子在至少在微米级范围内的规则排列。

2、均匀性:晶体内部各个部分的宏观性质是相同的。

3、各向异性:晶体中不同的方向上具有不同的物理性质。

4、对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。

5、自限性:晶体具有自发地形成封闭几何多面体的特性。

6、解理性:晶体具有沿某些确定方位的晶面劈裂的性质。

7、最小内能:成型晶体内能最小。

8、晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。

组成晶体的结构微粒(分子原子离子)在空间有规则地排列在一定的点上,这些点群有一定的几何形状,叫做晶格。排有结构粒子的那些点叫做晶格的结点。金刚石、石墨、食盐的晶体模型,实际上是它们的晶格模型。

种类
晶体精美晶体
晶体的一些性质取决于将分子联结成固体的结合力。这些力通常涉及原子或分子的最外层的电子(或称价电子)的相互作用。如果结合力强,晶体有较高的熔点。如果它们稍弱一些,晶体将有较低的熔点,也可能较易弯曲和变形。如果它们很弱,晶体只能在很低温度下形成,此时分子可利用的能量不多。

有四种主要的晶体键。离子晶体由正离子负离子构成,靠不同电荷之间的引力结合在一起。氯化钠是离子晶体的一例。共价晶体的原子或分子共享它们的价电子。钻石是重要的共价晶体。金属的原子变为离子,被自由的价电子所包围,它们能够容易地从一个原子运动到另一个原子。当这些电子全在同一方向运动时,它们的运动称为电流。分子晶体的分子完全不分享它们的电子。它们的结合是由于从分子的一端到另一端电场有微小的变动。因为这个结合力很弱,这些晶体在很低的温度下就熔化。典型的分子结晶如固态氧和冰。

在离子,晶体中,电子从一个原子转移到另一个原子。共价晶体的原子分享它们的价电子。金属原子的一端有少量的负电荷,另一端有少量的正电荷。一个弱的电引力使分子就位。

用来制作工业用的晶体的技术之一,是从熔液中生长。籽晶可用来促进单晶体的形成。在这个工序里,籽晶降落到装有熔融物质的容器中。籽晶周围的熔液冷却,它的分子就依附在籽晶上。这些新的晶体分子承接籽晶的取向,形成了一个大的单晶体。蓝宝石和红宝石的基本成分是氧化铝,它的熔点高,制成一个盛装它的熔液的容器是困难的。人工合成蓝宝石和红宝石是用维尔纳叶法(焰熔法)制成,即将氧化铝粉和少量上色用的或铬粉,通过火焰下滴到籽晶上。火焰将粉熔解,然后在籽晶上重新结晶。

生长人造钻石需要高于1600℃的温度和60000倍大气压。人造钻石砂粒小且黑,它们适宜工业应用。区域熔化过程用来纯化半导体工业中的硅晶体。一个单晶体垂直悬挂在硅棒的顶端上。在两者接触处加热,棒的顶端熔化,并在单晶体上重结晶,然后将加热处慢慢地沿棒下移。

对称性
晶体三维晶体
在晶体的外形以及其他宏观表现中还反映了晶体结构的对称性。晶体的理想外形或其结构都是对称图象。这类图象都能经过不改变其中任何两点间距离的操作後复原。这样的操作称为对称操作,平移、旋转、反映和倒反都是对称操作。能使一个图象复原的全部不等同操作,形成一个对称操作群。

在晶体结构中空间点阵所代表的是与平移有关的对称性,此外,还可以含有与旋转、反映和倒反有关并能在宏观上反映出来的对称性,称为宏观对称性,它在晶体结构中必须与空间点阵共存,并互相制约。制约的结果有二:

①晶体结构中只能存在1、2、3、4和6次对称轴,

②空间点阵只能有14种形式。n次对称轴的基本旋转操作为旋转360°/n,因此,晶体能在外形和宏观中反映出来的轴对称性也只限于这些轴次。

由于原子并不处于静止状态,存在着外来原子引起的点阵畸变以及一定的缺陷,基本结构虽然仍符合上述规则性,但绝不是如设想的那样完整无缺,存在数目不同的各种形式的晶体缺陷。另外还必须指出,绝大多数工业用的金属材料不是只由一个巨大的单晶所构成,而是由大量小块晶体组成,即多晶体。在整块材料内部,每个小晶体(或称晶粒)整个由三维空间界面与它的近邻隔开。这种界面称晶粒间界,简称晶界。晶界厚度约为两三个原子。

预制

大多数天然晶体都是一个原子接一个原子或一个分子接一个分子来完成的但是JillianBanfield和同事们发现了一些晶体,它们是由含有成百上千个原子的“预制”纳米晶体装配而成。据一篇相关的研究评述,这种晶体的块生长方式可能会对制造用于光学和电子设备(比如激光或硬盘)的人工材料有用。水铁石(ferrihydrite)的天然的预制晶体是由细菌合成的,在被水淹了的矿的烂泥里能找到,水铁石靠排列的纳米晶体连接起来而生长。这种生长晶体的方式引入特有的缺陷,可能会影响晶体在以后反应中的性质。

缺陷
晶体矿物晶体
在二十世纪初叶,人们为了探讨物质的变化和性质产生的原因,纷纷从微观角度来研究晶体内部结构,特别是X射线衍射的出现,揭示出晶体内部质点排列的规律性,认为内部质点在三维空间呈有序的无限周期重复性排列,即所谓空间点阵结构学说。

前面讲到的都是理想的晶体结构,实际上这种理想的晶体结构在真实的晶体中是不存在的,事实上,无论是自然界中存在的天然晶体,还是在实验室(或工厂中)培养的人工晶体或是陶瓷和其它硅酸盐制品中的晶相,都总是或多或少存在某些缺陷,因为:首先晶体在生长过程中,总是不可避免地受到外界环境中各种复杂因素不同程度影响,不可能按理想发育,即质点排列不严格服从空间格子规律,可能存在空位、间隙离子、位错、镶嵌结构等缺陷,外形可能不规则。另外,晶体形成后,还会受到外界各种因素作用如温度、溶解、挤压、扭曲等等。
晶体缺陷:各种偏离晶体结构中质点周期重复排列的因素,严格说,造成晶体点阵结构周期势场畸变的一切因素。

如晶体中进入了一些杂质。这些杂质也会占据一定的位置,这样破坏了原质点排列的周期性,在二十世纪中期,发现晶体中缺陷的存在,它严重影响晶体性质,有些是决定性的,如半导体导电性质,几乎完全是由外来杂质原子和缺陷存在决定的,许多离子晶体的颜色、发光等。另外,固体的强度,陶瓷、耐火材料的烧结和固相反应等等均与缺陷有关,晶体缺陷是近三、四年国内外科学研究十分注意的一个内容。

根据缺陷的作用范围把真实晶体缺陷分四类:

点缺陷:在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子。

线缺陷:在二维尺寸小,在另一维尺寸大,可被电镜观察到。

面缺陷:在一维尺寸小,在另二维尺寸大,可被光学显微镜观察到。

体缺陷:在三维尺寸较大,如镶嵌块,沉淀相,空洞,气泡等。

一、点缺陷

按形成的原因不同分三类:

1热缺陷(晶格位置缺陷)

在晶体点阵的正常格点位出现空位,不该有质点的位置出现了质点(间隙质点)。

2组成缺陷

外来质点(杂质)取代正常质点位置或进入正常结点的间隙位置。

3电荷缺陷

晶体中某些质点个别电子处于激发状态,有的离开原来质点,形成自由电子,在原来电子轨道上留下了电子空穴。

1.缺陷符号及缺陷反应方程式

缺陷符号以二元化合物MX为例

1)晶格空位:正常结点位没有质点,VM,VX

2)间隙离子:除正常结点位置外的位置出现了质点,Mi,Xx

3)错位离子:M排列在X位置,或X排列在M位置上,若处在正常结点位置上,则MM,XX

4)取代离子:外来杂质L进入晶体中,若取代M,则LM,若取代X,则LX,若占据间隙位,则Li。

5)自由电子e’(代表存在一个负电荷),,表示有效电荷

6)电子空穴h•(代表存在一个正电荷),•表示有效正电荷,如:

从NaCl晶体中取走一个Na+,留下一个空位造成电价不平衡,多出负一价。相当于取走Na原子加一个负有效负电荷,e失去→自由电子,剩下位置为电子空穴h•

7)复合缺陷

同时出现正负离子空位时,形成复合缺陷,双空位。

VM+VX→(VM-VX)

缺陷反应方程式

必须遵守三个原则

晶体正方晶体

1)位置平衡——反应前后位置数不变(相对物质位置而言)

2)质点平衡——反应前后质量不变(相对加入物质而言)

3)电价平衡——反应前后呈电中性

例:将CaCl2引入KCl中:

将CaO引入ZrO2中

注意:只从缺陷反应方程看,只要符合三个平衡就是对的,但实际上往往只有一种是对的,这要知道其它条件才能确定哪个缺陷反应是正确的。

确定(1)式密度增加,要根据具体实验和计算。

2.热缺陷(晶格位置缺陷)

只要晶体的温度高于绝对零度,原子就要吸收热能而运动,但由于固体质点是牢固结合在一起的,或者说晶体中每一个质点的运动必然受到周围质点结合力的限制而只能以质点的平衡位置为中心作微小运动,振动的幅度随温度升高而增大,温度越高,平均热能越大,而相应一定温度的热能是指原子的平均动能,当某些质点大于平均动能就要离开平衡位置,在原来的位置上留下一个空位而形成缺陷,实际上在任何温度下总有少数质点摆脱周围离子的束缚而离开原来的平衡位置,这种由于热运动而产生的点缺陷——热缺陷。

热缺陷两种基本形式:

a-弗仑克尔缺陷,

b-肖特基缺陷

(1)弗仑克尔缺陷

具有足够大能量的原子(离子)离开平衡位置后,挤入晶格间隙中,形成间隙原子离子,在原来位置上留下空位。

特点:空位与间隙粒子成对出现,数量相等,晶体体积不发生变化。

在晶体中弗仑克尔缺陷的数目多少与晶体结构有很大关系,格点位质点要进入间隙位,间隙必须要足够大,如萤石(CaF2)型结构的物质空隙较大,易形成,而NaCl型结构不易形成。总的来说,离子晶体,共价晶体形成该缺陷困难。

(2)肖特基缺陷

表面层原子获得较大能量,离开原来格点位跑到表面外新的格点位,原来位置形成空位这样晶格深处的原子就依次填入,结果表面上的空位逐渐转移到内部去。

特点:体积增大,对离子晶体、正负离子空位成对出现,数量相等。结构致密易形成肖特基缺陷。

晶体热缺陷的存在对晶体性质及一系列物理化学过程,导电、扩散、固相反应、烧结等产生重要影响,适当提高温度,可提高缺陷浓度,有利于扩散,烧结作用,外加少量填加剂也可提高热缺陷浓度,有些过程需要最大限度避免缺陷产生,如单晶生产,要非常快冷却。

3.组成缺陷

主要是一种杂质缺陷,在原晶体结构中进入了杂质原子,它与固有原子性质不同,破坏了原子排列的周期性,杂质原子在晶体中占据两种位置(1)填隙位(2)格点位

4.电荷缺陷(Chargedefect)

从物理学中固体的能带理论来看,非金属固体具有价带,禁带和导带,当在OR时,导带全部完善,价带全部被电子填满,由于热能作用或其它能量传递过程,价带中电子得到一能量Eg,而被激发入导带,这时在导带中存在一个电子,在价带留一孔穴,孔穴也可以导电,这样虽末破坏原子排列的周期性,在由于孔穴和电子分别带有正负电荷,在它们附近形成一个附加电场,引起周期势场畸变,造成晶体不完整性称电荷缺陷。

例:纯半导体禁带较宽,价电带电子很难越过禁带进入导带,导电率很低,为改善导电性,可采用掺加杂质的办法,如在半导体硅中掺入P和B,掺入一个P,则与周围Si原子形成四对共价键,并导出一个电子,叫施主型杂质,这个多余电子处于半束缚状态,只须填加很少能量,就能跃迁到导带中,它的能量状态是在禁带上部靠近导带下部的一个附加能级上,叫施主能级,叫n型半导体。当掺入一个B,少一个电子,不得不向其它Si原子夺取一个电子补充,这就在Si原子中造成空穴,叫受主型杂质,这个空穴也仅增加一点能量就能把价带中电子吸过来,它的能量状态在禁带下部靠近价带顶部一个附加能级,叫受主能级,叫P型半导体,自由电子,空穴都是晶体一种缺
点缺陷在实践中有重要意义:烧成烧结,固相反应,扩散,对半导体,电绝缘用陶瓷有重要意义,使晶体着色等。

二、线缺陷

实际晶体在结晶时,受到杂质,温度变化或振动产生的应力作用或晶体由于受到打击,切割等机械应力作用,使晶体内部质点排列变形,原子行列间相互滑移,不再符合理想晶体的有序排列,形成线状缺陷。

位错直观定义:晶体中已滑移面与未滑移面的边界线。

这种线缺陷又称位错,注意:位错不是一条几何线,而是一个有一定宽度的管道,位错区域质点排列严重畸变,有时造成晶体面网发生错动。对晶体强度有很大影响。

位错主要有两种:刃型位错和螺型位错。

1.刃型位错

其形式可以设想为:在一完整晶体,沿BCEF晶面横切一刀,从BC→AD,将ABCD面上半部分,作用以压力δ,使之产生滑移,距离(柏氏矢量晶格常数或数倍)滑移面BCEF,滑移区ABCD,未滑移区ADEF,AD为已滑移区交界线—位错线。

滑移上部多出半个原子面,就象刃一样(劈木材)称刃型位错。

特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。

2.螺型位错

其形成可设想为:在一完整晶体,沿ABCD晶面横切一刀,在ABCD面上部分沿X方向施一力,使其生产滑移,滑移区ABCD未滑移区ADEF,交界线AD(位错线)

特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。

刃型位错与螺型位错区别:

a-正常面网,

b-刃型位错,

c-螺型位错

主要从各自特点区别:

刃型:滑移方向与位错线垂直,多半个原子面,位错线可为曲线。

螺型:滑移方向与位错线平行,呈螺旋状,位错线直线。

由于位错的存在对晶体的生长,杂质在晶体中的扩散,晶体内镶嵌结构的形成及晶体的高温蠕变性等一系列性质和过程都有重要影响。

晶体位错的研究方法:通常用光学显微镜,X光衍射电子衍射和电子显微镜等技术进行直接观察和间接测定。
位错具有以下基本性质:

(1)位错是晶体中原子排列的线缺陷,不是几何意义的线,是有一定尺度的管道。

(2)形变滑移是位错运动的结果,并不是说位错是由形变产生的,因为一块生长很完事的晶体中,本身就存在很多位错。

(3)位错线可以终止在晶体的表面(或多晶体的晶界上),但不能终止在一个完事的晶体内部。

(4)在位错线附近有很大应力集中,附近原子能量较高,易运动。

晶体球形晶体
三、面缺陷

涉及较大范围(二维方向)、晶界、晶面、堆垛层错。

1.晶面:由于晶体表面处的离子或原子具有不饱和键,有很大反应活性,表面结构出现不对称性,使点阵受到很大弯曲变形,因而能量比内部能量高,是一种缺陷。

2.晶界:晶粒之间交界面,晶粒间取向不同出现晶粒间界,在晶粒界面上的排列是一种过渡状态与两晶粒都不相同。

1)小角度晶界(镶嵌块)

尺寸在10-6-10-8m的小晶块,彼此间以几秒到的微小角度倾斜相交,形成镶嵌结构,有人认为是棱位错,由于晶粒以微小角度相交,可以认为合并在一起,在晶界面是形成了一系列刃型位错。

2)大角度晶界,各晶面取向互不相同,交角较大,在多晶体中,晶体可能出现大角度晶界。在这种晶界中,顶点排列接近无序状态,晶界处是缺陷位置,所以能量较高,可吸附外来质点。晶界是原子或离子扩散的快速通道,也是空位消除的地方,这种特殊作用对固相反应,烧结起重要作用,对陶瓷、耐火材料等多晶材料性能如蠕变、强度等力学性能和极化、损耗等介电性能影响较大。

3.堆垛层错

离子堆垛过程中发生了层次错动,出现堆垛层错,如面心立方堆积形式为ABCABCA……→ABCACBABC中间的B层和C层发生了层次错动,出现缺陷。

非化学计量化合物

定义:化合物中各元素的原子数之比不是简单的整数而出现了分数,如Fe1-xO,Cu2-xO,Co1-xO等。

结晶
晶体晶体
结晶分两种,一种是降温结晶,另一种是蒸发结晶。

降温结晶:首先加热溶液,蒸发溶剂成饱和溶液,此时降低热饱和溶液的温度,溶解度随温度变化较大的溶质就会呈晶体析出,叫降温结晶。

蒸发结晶:蒸发溶剂,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质就会呈晶体析出,叫蒸发结晶。

常见的晶体有萘,海波,冰,各种金属。

区别
晶体非晶体排列模拟

固态物质分为晶体和非晶体。从宏观上看,晶体都有自己独特的、呈对称性的形状,如食盐呈立方体;冰呈六角棱柱体;明矾呈八面体等。而非晶体的外形则是不规则的。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。而非晶体的物理性质却表现为各向同性。晶体有固定的熔化温度—熔点(或凝固点),而非晶体则是随温度的升高逐渐由硬变软,而熔化。

晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。组成晶体的微粒──原子是对称排列的,形成很规则的几何空间点阵。空间点阵排列成不同的形状,就在宏观上呈现为晶体不同的独特几何形状。组成点阵的各个原子之间,都相互作用着,它们的作用主要是静电力。对每一个原子来说,其他原子对它作用的总效果,使它们都处在势能最低的状态,因此很稳定,宏观上就表现为形状固定,且不易改变。晶体内部原子有规则的排列,引起了晶体各向不同的物理性质。例如原子的规则排列可以使晶体内部出现若干个晶面,立方体的食盐就有三组与其边面平行的平面。如果外力沿平行晶面的方向作用,则晶体就很容易滑动(变形),这种变形还不易恢复,称为晶体的范性。从这里可以看出沿晶面的方向,其弹性限度小,只要稍加力,就超出了其弹性限度,使其不能复原;而沿其他方向则弹性限度很大,能承受较大的压力、拉力而仍满足虎克定律。当晶体吸收热量时,由于不同方向原子排列疏密不同,间距不同,吸收的热量多少也不同,于是表现为有不同的传热系数和膨胀系数。

非晶体的内部组成是原子无规则的均匀排列,没有一个方向比另一个方向特殊,如同液体内的分子排列一样,形不成空间点阵,故表现为各向同性。

当晶体从外界吸收热量时,其内部分子、原子的平均动能增大,温度也开始升高,但并不破坏其空间点阵,仍保持有规则排列。继续吸热达到一定的温度──熔点时,其分子、原子运动的剧烈程度可以破坏其有规则的排列,空间点阵也开始解体,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来一部分一部分地破坏晶体的空间点阵,所以固液混合物的温度并不升高。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。而非晶体由于分子原子的排列不规则,吸收热量后不需要破坏其空间点阵,只用来提高平均动能,所以当从外界吸收热量时,便由硬变软,最后变成液体。玻璃、松香、沥青和橡胶就是常见的非晶体。

多数的固体晶体属于多晶体(也叫复晶体),它是由单晶体组成的。这种组成方式是无规则的,每个单晶体的取向不同。虽然每个单晶体仍保持原来的特性,但多晶体除有固定的熔点外,其他宏观物理特性就不再存在。这是因为组成多晶体的单晶体仍保持着分子、原子有规则的排列,温度达不到熔解温度时不会破坏其空间点阵,故仍存在熔解温度。而其他方面的宏观性质,则因为多晶体是由大量单晶体无规则排列成的,单晶体各方向上的特性平均后,没有一个方向比另一个方向上更占优势,故成为各向同性。各种金属就属于多晶体。它们没有固定的独特形状,表现为各向同性。

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 等效粒径    下一篇 晶形 

标签

暂无标签

同义词

暂无同义词