钨钼百科  > 所属分类  > 
[1] 评论[0] 编辑

核武器

简介
原子弹爆炸原子弹爆炸

核武器也叫核子武器原子武器。是指利用自持(不需外界干预,自身可持续进行)核裂变核聚变反应(或两者兼有)瞬间释放出的巨大能量产生爆炸作用造成大规模杀伤或破坏以及造成大面积污染效果的武器。主要包括裂变核武器(第一代核武,通常称为原子弹)和聚变核武器(亦称为氢弹,分为两级及三级式)。亦有些还在武器内部放入具有感生放射的轻元素,以增大辐射强度扩大污染,或加强中子放射以杀伤人员(如中子弹)。

核武器系统由核战斗部、投掷系统和指挥控制系统构成。从广义上讲,核武器就是指整个核武器系统;从狭义上说,核武器仅指核战斗部。

历史

1945年7月16日,美国进行了世界上第一次核爆炸实验。

1945年8月6日,美国用B-29型轰炸机运载小男孩2万吨当量原子弹轰炸广岛。爆炸时间:8点15分43秒,城市中心12平方公里内的建筑物全部被毁,全市房屋毁坏率达70%以上。关于死亡人数,日美双方公布数字相差甚大。据日本官方统计,死亡和失踪人数达71379人,受伤人数近10万人。

1945年8月9日10点58分,“胖子”原子弹被投放于长崎

此后,苏、英、法相继进行了核爆炸试验,接着又进行了威力更大的氢弹试验。据统计,地球上已记录到约2053次核试验。美国1093次,其中200次为大气层核试验(11次高空,81次中空,72次地面,36次水面),888次地下核试验,五次水下。前苏联进行715次核试验,其中大气层212次,地下核试验500次,水下3次。法国188次,英国43次,中国35次,印度6次,巴基斯坦5次。

武器效用
核武器核武器

核武器是迄今人类制造的杀伤破坏威力最大的武器。核武器的杀伤破坏作用是其爆炸瞬间释放的巨大能量转化出的多种杀伤破坏因素造成的。这些杀伤破坏因素分为两类:第一类作用时间仅为数十秒,称为瞬时杀伤因素,包括光辐射、冲击波、早期核辐射、核电磁脉冲等4种;第二类作用时间可持续几天甚至更久,主要是指爆炸产物的放射性沾染:

光辐射光辐射就是核爆炸时从温度高达数百万、几千万度的火球辐射出来的光和热。
它可造成人员皮肤烧伤、视网膜烧伤、闪光(致)盲;如果炽热的空气被吸入还可造成呼吸道烧伤。光辐射还能使木、棉、橡胶、塑料制品熔化、碳化、燃烧,使火药燃烧、熔化;还能引爆炸药,引起火灾。

冲击波:冲击波是爆炸瞬间形成的高温火球猛烈向外膨胀、压缩周围空气形成的高压气浪。
它以超音速向四周传播,随距离的增加,传播速度逐渐减慢,压力逐渐减小最后变成声波。冲击波的直接杀伤是通过超压挤压人体内脏和听觉器官,及其动压使人体抛出,撞击地面或其它物体造成的。间接杀伤是指被冲击波破坏的物体(如倒塌的房屋)或抛射的物体作用于人体造成的损伤。冲击波也能破坏工事、建筑物和武器装备。

早期核辐射:早期核辐射是指核爆炸前十几秒内放出的r射线中子流。前者以光速传播,后者速度也可达每秒数千米至几千万米,两行均有很强的穿透能力。早期核辐射能引起人员、牲畜的放射病。

核电磁脉冲:核爆炸瞬间释放的r和X射线与周围的分子、原子相互作用产生大量带电粒子,这些粒子高速运动,在爆心周围形成很强的瞬时电磁场,并以波的形式向四面八方扩散传播,这就是核电磁脉冲。核电磁脉冲场强很高、频谱很宽,传播速度快(光速),作用范围比光辐射、冲击波和早期核辐射大得多。它能在导体中感生出很大的瞬时电压和电流,干扰或破坏无防护的电子设备、电路和元器件。

放射性沾染:核爆炸产生的放射性沉降物质对地面、水、空气、食品、人体、武器装备等造成的污染,称为放射性沾染。对于暴露的人员,放射性物质的各种射线将使其患放射病。放射性沾染通过空气、水或食物进入人的口、鼻、体内组织,也会引起放射病。  

核武器的综合杀伤破坏作用:核爆炸时上述各种杀伤破坏因素几乎同时发生,因此,其对人员和武器装备的杀伤破坏往往是多种因素综合作用的后果。

分类

核武器从释放能量原理的角度划分,可以分为裂变核武器与聚变核武器

核武器 氢弹形成的烟云
裂变核武器(原子弹):一个重原子核(如铀235,钚239)分裂为质量相接近的两个或几个较轻的原子核,称为核裂变。利用铀235或钚239原子核的自持裂变链式反应原理制成的核武器,称为裂变核武器,通常称为原子弹。平时,原子弹中的铀235和钚239裂变装料处于次临界状态,不会产生核爆炸。起爆时利用常规炸药爆炸使次临界状态的裂变装料在瞬间达到超临界状态,产生自持裂变链式反应并将反应能量以爆炸形式瞬间释放出来。

按起爆方式,原子弹可分为枪式和内爆式两种。前者的核装药由若干块处于亚临界的铀235或钚239组成。化学炸药爆炸使其合拢,达到超临界状态,实现核爆炸。后者是利用化学炸药爆轰,通过内爆压缩处于亚临界状态的裂变材料,使其密度加大而达到超临界状态,实现核爆炸。

聚变核武器(热核武器,氢弹):轻原子核相遇,聚合成为较重的原子核,称为核聚变。聚变反应必须在极高温度(几千万度)下才能发生,因此又称为热核反应。聚变反应释放的能量高于裂变反应,1千克氘(符号:D)、氚(符号:T)混合物完全聚合释出的能量是1 千克铀235裂变能量的四倍多。

利用氢的同位素氘、氚等轻原子核的聚变反应原理制成的核武器称为热核武器或聚变武器,通常称为氢弹。目前热核反应的条件只能由原子弹爆炸来提供。因此目前氢弹都用原子弹作为引发聚变反应的“扳机”,又称为“初级”。氢弹内发生热核反应并用高能中子诱发重核裂变的部分称为氢弹主体,又称次级。氢弹的初级和次级按特定的组合方式装在同一弹壳内。

核武器 中子弹爆炸的瞬间
中子弹(加强辐射弹):以高能中子为主要杀伤因素而相对减弱冲击波和光辐射效应的核武器,称为中子弹,或“加强辐射弹”,或“弱冲击波强辐射弹”。

中子弹是一种小型、低当量氢弹,它以为聚变材料,以尽可能低的核裂变当量弹为“扳机”,使其中子辐射大大增强,冲击波、光辐射和放射性沾染均相对减弱。据测算,1 枚当量为1千吨的中子弹,在150米高度爆炸时,其瞬时核辐射杀伤半径可达800米,对坦克乘员的杀伤相当于1枚当量为1万吨的原子弹,而冲击波对建筑物的破坏半径约为550米,不及该原子弹的1/2。中子弹扳机的特点是利用较少裂变材料就能放出较多能量以满足氘氚聚变反应所需的高温。其技术关键一般说来是:用临界质量小的钚239代替铀235,使装料减少到1/3;在裂变扳机中加入少量氘氚混合物。中子弹爆炸过程大致如下:首先是化学炸药爆炸引发钚239的裂变反应;然后钚239的裂变反应引发“扳机区”氘氚混合物的聚变反应,产生大量高能中子,促进钚239的裂变,放出更多中子并进一步提高“扳机区”的温度。此过程称为“中子反馈”;中子弹用的此种扳机称为“加强原子弹”;最后裂变反应产生的高温高压引发聚变材料区氘氚的聚变反应。

中子弹是一种战术核武器,能有效地杀伤人员和对付装甲集群目标,其对建筑物和武器装备的破坏作用很小,放射性沾染也很轻。适合于本土防御作战使用。

其它分类:核武器从作战使用目的角度划分,可以分为战略核武器、战术核武器与战区核武器;从运载(投送)方式角度分类,可以分为核导弹、核航弹、核炮弹、核深水炸弹、核地雷、核鱼雷、核水雷等:

核导弹是装有核弹头的导弹,可从陆上、空中、水面、水下发射。按照其作战使用目的可分为战略核导弹和战术核导弹两类。

核航弹是装有核装置的炸弹,一般由飞机投掷并利用降落伞减速保证投弹飞机的安全。世界上仅有的实战使用核武器就是1945年8月美国投放在日本广岛和长崎的两枚核航弹。

核炮弹是用火炮发射的核装药炮弹,常作为战术核武器使用。例如美国XM一785型155毫米榴弹炮的核弹头,威力为2000吨TNT当量。

核地雷是装核装药的地雷,用于打击集群装甲目标,可在敌主攻方向的狭窄地段炸出大坑,形成大面积污染,遏制敌坦克、机械化部队的进攻。一枚2000吨当量的核地雷可摧毁距爆心200米范围内的坦克和260米范围内的装甲车。

核鱼雷是装有核装置的鱼雷,由潜艇携带,用于攻击大型水面舰艇、舰队、商船队及港口、基地、大型海岸工程等目标。美国MK一48一5鱼雷就有核装药型。

核深水炸弹(核深弹)是装有核装置,用于攻击潜艇等水下目标的炸弹。一枚1万吨TNT当量的核深弹在水下爆炸可将距离1千米以内的潜艇击沉或严重破坏。美国核深弹仍在服役。

核水雷是装有核装药的水雷,用于毁伤敌方舰船或阻碍其行动。1~2万吨的核水雷爆炸能使700~1400米处的舰船遭到中度损伤。

其它核武器

冲击波弹:一种以冲击波效应为主要杀伤破坏因素的特殊性能氢弹。其确切名称是减少剩余放射性弹,简称RRR弹。

1980年,美国宣布已研制成功冲击波弹,并称这种弹的放射性沉降要比同威力纯裂变武器降低一个数量级以上,且光辐射破坏效应也显著减少。

冲击波弹的杀伤破坏作用与常规武器相近,能以地面或接近地面的核爆炸摧毁敌方坚固的军事目标,且产生的放射性沉降较少;爆后不久,己方部队即可进入爆区。因此,比较适合在战场上使用。

感生放射性弹:利用核爆炸释放的中子照射某些添加的核素(如钴一59,或锌一64),感生大量半衰期较长的放射性同位素,从而增强放射性沾染的核武器。

威力
核武器 原子弹炸后的广岛一铁轨
核武器的杀伤破坏作用与其威力直接相关。描述核武器的威力经常使用两种参数:

核武器的威力:核武器的威力指爆炸时释放的总能量,通常用TNT当量(梯恩梯当量)度量。它表示产生同样能量所需的TNT炸药的重量;常用吨、千吨或百万吨TNT当量表示,有时简称“当量”,1吨TNT炸药爆炸释放的能量约为4183兆焦。外军现装备的核武器已形成不同威力的完整系列。特大当量核武器,如前苏联的SS一9型洲际战略导弹,单弹头当量为2500万吨;最小的核武器,如美国的w54特种核地雷,当量仅为10吨。

核武器的比威力:核武器的比威力是其威力与弹重的比值,单位是吨TNT当量/千克或简称吨/千克。比威力是核武器研制水平的标志,该值越高,研制水平也越高。

1945年美国投在日本的两枚原子弹比威力值为0.3~4.5吨/千克。1989年美国生产的三叉戟2型D5/MK5 潜射导弹的w88型核弹头,当量为475万吨,比威力达2.35千吨/千克。

目前,某些核武器已具有“当量可调性”,即同一枚核弹,其威力可在一定范围内变动。例如美国的B61核航弹,其当量有4种,调节范围为0.5~34.5万吨,可根据战术需要直接在载机上灵活调节。

 名称  当量(千吨)  备注
 大卫克罗无后座力炮(可变当量)  0.01-0.1  质量仅23kg,美国投放的最轻量级的核弹
 广岛原子弹
(小男孩)
 13  枪式铀235裂变弹
长崎原子弹
(胖子)
 20-22  内爆式钚239裂变弹
 W-76  100  8枚装备在三叉戟一型导弹上
 B-61Mod3  0.3/1.5/60/170  自由落体炸弹,4度可变当量
 B-61Mod10  5  自由落体炸弹 可用战术飞机投放,如F/A-18A-10
 W-87  300  10枚装备在和平卫士导弹上
 W-88  475  8枚装备在三叉戟二型导弹上
 Castle Bravo  15000  美国最大当量的测试弹头

 EC17/MK17EC24/MK24B41/MK41

 25000  美国装备部队的最大当量弹头,由B-36携带,自由落体炸弹,1957年退役
 Tsar Bomba  50000  前苏联最大当量的测试弹头

冲击波的破坏:核弹的主要的破坏力来自于冲击波效应。绝大多数的建筑(当然除了特别加固和抗冲击结构的工事),将受到致命的摧毁。冲击波的速度将超过每小时几百公里,而他肆虐的范围会随着核武器当量的增加而增加。两种相似又不同的现象将随冲击波的到来而产生:

静态超压:冲击波带来的压强急速升高,任何给定点的静态超压正比于冲

核武器 原子弹爆炸后的长崎
击波中的空气密度

动态压强:即是被形成冲击波的疾风拉扯的效应,疾风会推动、摇晃和撕裂周围的物体。

大多数核武器空爆造成的破坏就是由静态超压和动态的疾风合成的效果。较长时间的超压拉动建筑结构使其变得脆弱,这时吹来的疾风再一举将其摧毁。压缩、真空和拉扯效应总共会持续若干秒钟,或者更长。而这里的疾风比世界上任何可能出现过的飓风都要更加凶猛。

热辐射:核武器的爆炸会伴随有大量的电磁波辐射爆发,分布在可见光波段,及红外的和紫外的波段上。主要的伤害机制是造成灼伤及对肉眼的伤害。在晴朗的天气下,作用范围可超过冲击波。辐射光的能量是如此之强,它可以在冲击波留下的废墟中再制造一场大火。而热辐射所作用的范围,随武器当量的增加而显著地增长。

由于热辐射线是以直线传播的,所以任何不透明的物体都可以成为有效的壁垒阻止其传播。但是,如果空气中有雾气,这些小水珠可以散射辐射线使其向四面八方传播,于是所有的壁垒都会显著地丧失作用。 当热辐射线作用于一个物体时,部分的能量会被反射,部分被传导和转化掉,而剩下的会被吸收。吸收的比率取决于物体的特性和颜色。一个薄片状的物体可以将大部分的能量传导掉,同时浅颜色的物体可以反射许多辐射,它们受到的伤害都会小一些。对辐射线的吸收造成温度在表面的迅速升高,例如木材、纸张、织物等都会被点燃和烤焦。如果恰好这种物质是不良导体,那么加热现象只会在表面产生。 事实上,物质是否被点燃还仰赖于热辐射持续的长短,物质的厚度和包含的水分。在近距离上,所有的物质都会被加热蒸发,而在最远的距离上,只有最容易点燃和最脆弱的物质才会受到伤害。火灾并不一定只是热辐射线产生的,冲击波造成的混乱气流,也可能诱发大火。在广岛轰炸中,就有一场空前巨大的火灾,持续了20分钟。火焰加热空气使其上升,周围的空气填补这一真空,造成持续的指向爆心的强风。然而这种现象并不是核爆炸所特有的,在二战的大轰炸中,大量的燃烧弹或经常发生的森林火灾中的烈焰也能造成大风。

电磁脉冲:γ射线通过康普顿散射效应电子反冲加速,得到高能的电子。这些电子被地磁场捕捉,在地表以上20到40公里的高度上产生共振。周期性振动的电子即可产生连续的电磁脉冲(EMP),持续大约1毫秒。下一个持续大约1秒数量级的效应是,大量的长条形的金属物体(如电缆),在电磁波通过时会像天线一样工作并产生高压。这些强大的短暂的高,可以摧毁未经屏蔽保护的电子设备甚至是电线本身。但这种可怕的电磁脉冲对生物的影响人们却不甚了了。另外灼热的空气破坏了电离层,也会使无线电通讯受到影响。

唯一能够保护电子设备不受脉冲摧毁的措施是将其完全包裹在良导体内,或别的形式的法拉第笼内。当然,对于无线电通讯设备来说这是不可能的,因为它将收不到任何讯号。最大当量的核弹被用来实现大面积的,甚至是洲际范围的电磁轰炸。

原始粒子辐射核弹空爆中,大约5%的能量,以最原始的粒子和γ射线形式辐射掉了。裂变弹和聚变弹的中子辐射有很大不同。然而γ辐射的结构,无论是在这类爆炸式的核反应中,还是短半衰期的物质衰变中都是类似的。核反应粒子辐射随距离衰减快的原因,一个是它们的散布面积正比半径立方,强度即正比半径立方的倒数,一个是它们被大气强烈地吸收和散射。

粒子辐射的结构也与距离有关,在近爆心的地点,中子辐射强于γ辐射,但随着距离的增加,中子-伽玛比将减小。最终,中子成分与γ成分相比即可忽略。要注意的是,上述的这些距离,并不随爆炸当量的增加而有十分显著的变化。因此,越大当量的爆炸中,原始粒子辐射的效果就越不显著。在大块头的核弹中,譬如大于50kt,冲击波和热辐射的威力使得粒子辐射机制相形见绌,以至于被忽略。

放射性尘埃剩余的放射性残骸通过两种效应杀伤:放射性尘埃和中子感应机制,剩余粒子放射线从下列物质中产生:

裂变产物。裂变产物是由铀或钚在裂变反应中产生的中等质量的同位素。在裂变反应中,实际上产生的产物有超过300种。大多数是放射性的,且半衰期的长短不一,区别很大。短则几分之一秒,长则在数年内都有致命的放射性。它们衰变的经典机制是释放beta和γ射线。1千吨的当量中,有大约60克的放射性裂变产物。引爆一分钟之后,裂变产物的放射性等同于3千万公斤的镭同时衰变,也就是大约1.1E21Bq。

未裂变的装药。裂变物质的利用,在核武器中可谓是很不充分,大量的铀和钚在裂变前就被炸得四分五裂。这些核装药,以alpha衰变的形式缓慢地辐射,而它们的重要性也相对较小。

中子感应效应。当一个原子核在中子爆发的时候捕获了中子,作为一种已知的必然机制,它将变为放射性并在较长的周期内放射beta和γ射线。中子爆发作为最原始的核放射线,必将引起残留的中子感应效应。另外,环境物质,如土壤、空气和水,也将被感应激发,这取决于它们的化学成分和距爆心的距离。举例来说,在近爆心的地区,土壤中的矿物质由于中子爆发会变成有致命放射性的同位素。这是由于多种元素具有中子捕获能力,像这样的元素,都存在于土壤中且参与了中子感应效应。但这种效应并不重要,因为它只限于很有限的一块区域内。

在近地面的爆炸中,大量的土壤或水分将被火球加热蒸发,上升成为放射云。这些物质凝结后,由于混合了裂变产物和中子感应产物,将变得具有放射性。较大的颗粒将在24小时内沉降到爆心附近(也与风速和天气有关),而较小的颗粒有可能会在全球大气系统中漂流数周以至数月。一些当地沉降物覆盖的面积会远远大于热辐射和冲击波的范围,特别是在大当量的核爆中。在水面附近的核爆中,尘埃颗粒将较小,下落的比例将较小,而分布的面积就会比较广大。大量海水中的盐和一些水分,可以作为凝结核,引起当地的降雨从而使当地的核沉降大大增加。

全球放射性沉降的生物学破坏作用是由长半衰期的同位素在生物体内的富集主导的。像-90或-137这类元素,通过食物等进入人体。化学上,这些同位素和很像,他们会被误认为钙,而被吸收并沉积在骨骼中。这些高放射性的物质将会造成例如像白血病一类的放射性疾病。全球沉降的伤害效果毋庸置疑是小于当地的放射尘埃的。

在普遍的情况下,冲击波和热辐射的杀伤将远大于放射线的伤害。但是,放射线的辐射伤害比冲击波和热辐射更加复杂,人们对它也存在误解。各式各样的生物变异将在辐射区内的动物中发生。全身摄入高剂量放射性元素的个体将会立即死亡,其他摄入剂量较少的个体将会苟活,但也会随后来的并发症而死去。

武器的投送

战略核武器常指用来摧毁战略目标(如城市)的大当量核武器;战术核武器是指用于摧毁小型的特定目标(如军事、通讯或永备工事等目标)的较小的类型。以现代的眼光来看,在广岛和长崎投放的原子弹只能算是战术核弹(当量分别为13和22千吨),同时现代的战术核弹比之又要紧凑和轻巧。 核武器的基本投放方式有:

自由落体炸弹早期的核武器太大了,他们只能被B-29等飞机运载和投放,但在50年代中期,可由战斗轰炸机搭载的较小型的核武器被研制出来。这种新型空基的自由落体炸弹运用了多种新技术,包括翻滚轰炸(toss bombing),伞降投掷(parachute-retarded delivery),卧倒模式(laydown mode),以保证给与载机足够的逃离时间。

弹道导弹弹道导弹采用抛射物弹道飞行,通常用于超视距的弹头投送。机动弹道导弹具有十到上百公里的射程洲际弹道导弹(ICBM)和轨道轰炸系统(SLBM,原意是人造卫星发射的弹道导弹satellite-launched ballistic missile,因其整个系统采用轨道弹道部署在太空,可以实现全球轰炸,故译为“轨道轰炸系统”)采用亚轨道或部分轨道弹道以达到全球打击的效果。较早的弹道导弹携载单一的弹头,每一个有百万吨级的当量。自上世纪70年代之后,更新的弹道武器使用多弹头分导技术(MIRVs),每颗导弹可携带一打弹头,而每个弹头的当量下降到千吨级。这样一次发射就可威胁多个目标,或对一个目标造成更有效的打击。

巡航导弹这种导弹使用喷气发动机火箭发动机提供动力,以低空巡航的方式飞行,使用自动导航系统(基本上是惯导,但也有GPS导航和雷达中继制导作为辅助),突防能力更强。巡航导弹的射程较之弹道导弹要近,且携载能力也要差一些,当今也没有服役的多弹头巡航导弹。导弹可从潜艇、舰船及飞机上发射。

其他可能的投送方式包括榴弹炮的核炮弹、核地雷(蓝孔雀)、核深水炸弹、核鱼雷、核迫击炮弹。50年代,美国研制了用于空中截击的无控空-空火箭箭载小型核弹头,装备于F-106型截击机,但其在60年代就基本退役,而核深水炸弹也在90年代退役。可由两人携带的小型战术核弹也已研制成功,被一些媒体夸张为所谓的手提箱炸弹,它被称为“特别打击核武库”(“Special Atomic Demolition munition”)。尽管如此,人们还在追求当量与便携性的最佳整合,以达到最大的军事效用。

世界各国核武器状况
核武器 朝鲜宁边核设施
人类曾两次在战争中使用核武器,第二次世界大战实行曼哈顿计划美国日本广岛市和长崎市投下两枚原子弹。

至今有美国、俄罗斯、法国、英国、中国、印度、巴基斯坦、北朝鲜及以色列宣布拥有核武。其中的乌克兰与南非因和平原因放弃其国家的核武,属于曾经拥有核武的国家。

被称为“巴基斯坦核弹之父”的卡迪尔汗已经对外承认了自己向朝鲜、利比亚和伊朗三个被美国称为“流氓政权”的国家出售核武关键技术。,其中朝鲜已核试验成功,利比亚卡扎菲迫于美军压力已宣布放弃核武计划,而伊朗还在因伊拉克战争与萨达姆被判绞刑事件持观望态度。

国际原子能机构总干事巴拉迪称“有30个国家拥有迅速生产核武器的能力”,他所指的“迅速”是在三个月内就可以拥有核武器,这已经接近全世界国家总数的1/5了。而且具有生产核武器能力的国家恐怕最少应该在50个国家以上,巴拉迪同时指出联合国每年的1.5亿美元用于防止核扩散的开销费用,根本不能有效阻止现在越来越多的国家通过拥有大规模杀伤性武器来实现“自卫”的“潮流”,核武器也可能会流入恐怖主义组织的手中。

   国家 弹头数量(活跃/总数)  首次核试的年份
 不扩散核武器条约中的五个核武国家  美国  5,735/9,960  1945年
   俄罗斯  5,830/16,000  1949年
   英国  <200  1952年
   法国  350  1960年
   中国  400  1964年
 其他已知核武国家  印度  40-50  1974年
   巴基斯坦  30-52  1998年
未正式宣称拥有的核武国家  以色列 75-200 未知

研制方向

核定向能武器:以核爆炸能作为动力源的定向能武器,称为核定向能武器。这类武器利用核弹释放的巨大能量激励或驱动产生高能的激光束、粒子束、电磁脉冲、等离子体等,并使其定向发射,固而可有选择地攻击目标,能量也更集中,具有可控的特殊杀伤破坏目的。

核定向能武器主要有以下几种:

核激励X射线激光器:用核爆炸产生的巨大能量激励激光工作物质,使其产生X射线激光的装置,称为核激励X射线激光器,这种激光器的机理试验已在80年代中期进行,目前尚未制成武器系统。这种激光器若能研制成功,则将具有重量轻、可瞬时发射等优点。它只能在高空使用,其可能的用途是摧毁来袭的大规模齐射核导弹,也可能用于打击天基平台。

核电磁脉冲弹:利用在大气层以上的核爆炸,使之产生大量定向或不定向的强电磁脉冲,以毁坏敌方的通信系统等的核武器,称为核电磁脉冲弹,或EMP弹。它是美国正在研究发展的“第三代核武器”的一个重要组成部分,尚处于探索、预研阶段。

其作用可举例如下:一枚威力为百万吨TNT当量的普通氢弹在高空爆炸,在其所能覆盖的地球表面上(爆高为400千米的核爆炸,其覆盖半径为2200千米),最大的电场强度可达1~10万伏/米,频谱主要范围为1万至1亿赫兹。这样强的电磁脉冲作用到电子系统、设备、通信系统中,可产生很高的瞬时感应电压与电流,从而造成毁坏或瞬时电磁干扰。

附件列表


1

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 钚239    下一篇  核废料 nuclear waste material

标签

暂无标签

同义词

暂无同义词