钨钼百科  > 所属分类  > 
[1] 评论[0] 编辑

溅射工艺

溅射工艺  以一定能量的粒子(离子或中性原子、分子)轰击固体表面,使固体近表面的原子或分子获得足够大的能量而最终逸出固体表面的工艺。溅射只能在一定的真空状态下进行。
  溅射用的轰击粒子通常是带正电荷的惰性气体离子,用得最多的是氩离子。氩电离后,氩离子在电场加速下获得动能轰击靶极。当氩离子能量低于5电子伏时,仅对靶极最外表层产生作用,主要使靶极表面原来吸附的杂质脱附。当氩离子能量达到靶极原子的结合能(约为靶极材料的升华热)时,引起靶极表面的原子迁移,产生表面损伤。轰击粒子的能量超过靶极材料升华热的四倍时,原子被推出晶格位置成为汽相逸出而产生溅射。对于大多数金属,溅射阈能约为10~25电子伏。
  溅射产额,即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。在阈能附近溅射,产额只有10-5~10-4个原子/离子,随着入射离子能量的增加,溅射产额按指数上升。当离子能量为103~104电子伏时,溅射产额达到一个稳定的极大值;能量超过104电子伏时,由于出现明显的离子注入现象而导致溅射产额下降。溅射产额还与靶极材料、原子结合能、晶格结构和晶体取向等有关。一般说来,单金属的溅射产额高于它的合金;在绝缘材料中,非晶体溅射产额最高,单晶其次,复合晶体最低。
  溅射工艺主要用于溅射刻蚀和薄膜淀积两个方面。溅射刻蚀时,被刻蚀的材料置于靶极位置,受氩离子的轰击进行刻蚀。刻蚀速率与靶极材料的溅射产额、离子流密度和溅射室的真空度等因素有关。溅射刻蚀时,应尽可能从溅射室中除去溅出的靶极原子。常用的方法是引入反应气体,使之与溅出的靶极原子反应生成挥发性气体,通过真空系统从溅射室中排出。
  淀积薄膜时,溅射源置于靶极,受氩离子轰击后发生溅射。如果靶材是单质的,则在衬底上生成靶极物质的单质薄膜;若在溅射室内有意识地引入反应气体,使之与溅出的靶材原子发生化学反应而淀积于衬底,便可形成靶极材料的化合物薄膜。通常,制取化合物或合金薄膜是用化合物或合金靶直接进行溅射而得。在溅射中,溅出的原子是与具有数千电子伏的高能离子交换能量后飞溅出来的,其能量较高,往往比蒸发原子高出1~2个数量级,因而用溅射法形成的薄膜与衬底的粘附性较蒸发为佳。若在溅射时衬底加适当的偏压,可以兼顾衬底的清洁处理,这对生成薄膜的台阶覆盖也有好处。另外,用溅射法可以制备不能用蒸发工艺制备的高熔点、低蒸气压物质膜,便于制备化合物或合金的薄膜。溅射主要有离子束溅射和等离子体溅射两种方法。离子束溅射装置中,由离子枪提供一定能量的定向离子束轰击靶极产生溅射(图1)。离子枪可以兼作衬底的清洁处理(位置1)和对靶极的溅射(位置2)。为避免在绝缘的固体表面产生电荷堆积,可采用荷能中性束的溅射。中性束是荷能正离子在脱离离子枪之前由电子中和所致。离子束溅射广泛应用于表面分析仪器中,对样品进行清洁处理或剥层处理。由于束斑大小有限,用于大面积衬底的快速薄膜淀积尚有困难。
溅射工艺溅射工艺
  等离子体溅射也称辉光放电溅射。产生溅射所需的正离子来源于辉光放电中的等离子区。靶极表面必须是一个高的负电位,正离子被此电场加速后获得动能轰击靶极产生溅射,同时不可避免地发生电子对衬底的轰击。
  二极溅射是最简单的等离子体溅射装置。两个平行板电极间加上一个直流高电压:阴极为靶极,阳极为衬底。为使这种自持辉光放电保持稳定,除两极板间须保持一定电压外,极板间距和气体压强的大小也很重要。在两极板间距为数厘米的正常溅射间距下,放电气压一般高达10帕。在这样的气压下,粒子的平均自由程很短,对溅射不利。为保持更低气压下的溅射,可采用非自持放电,常用的是热电子激发法。直流四极溅射就是在原有的二极溅射设备上附加一对热灯丝和阳极组成的。从灯丝发出的强大电子流在流向阳极的途中,使处于低气压的氩气分子大量电离,从而提供足够的离子。这可使溅射在10-1~10-2帕的低气压下进行。外加磁场可使电子电离气体的效率增加。
  对于绝缘体靶的溅射,必须采用高频溅射方法。在靶极上施加高频电压,气体击穿后等离子体中的电子和离子将在靶极高频电场的作用下交替地向靶极迁移。电子的迁移率比离子高得多。频率很高时,离子向靶极的迁移就会跟不上高频信号的频率变化。因为靶是绝缘的,靶极回路净电流必须保持为零。为此,必须在靶极表面维持一个负电势,用以抑制电子向靶极的迁移,同时加速正离子的迁移,使流向靶极的电子数与离子数相等。正是这一负电势加速氩离子,使绝缘靶的溅射得到维持。为使这一负电势保持足够的数值,靶上的高频电压的频率必须足够高。频率过高,高频损耗增大且难于匹配。常用的频率约为13.56兆赫。
  等离子体溅射突出的问题是溅射速率低、衬底温度升高。从靶极发出的溅射原子流为ESj+。式中S为溅射产额,j+为轰击靶极的离子流密度。在S 确定以后,提高溅射速率必须增加离子流密度。另外,降低衬底温升,必须防止高能二次电子对衬底的轰击。磁控溅射能解决这两个问题。磁控溅射利用高频磁控管的原理,在溅射室中引入一个与电场方向正交的磁场。在此磁场的控制下,电子局限于靶极附近并沿螺旋形轨道运动,大大提高电子对氩原子的电离效率,增加轰击靶极的离子流密度j+,实现快速的大电流溅射。同时,又能避免电子直接向衬底加速,降低衬底的温升。磁控溅射有直流和高频两类。按结构又有同轴型、平面型和S枪等多种类型。图2为一平面型磁控溅射装置,图中虚线表示磁场方向。靶极上出现不均匀侵蚀,会使磁控溅射靶材利用率降低。
溅射工艺溅射工艺
  离子镀膜法将真空蒸发和溅射工艺相结合,利用溅射对衬底作清洁处理,用蒸发的方法镀膜。衬底置于阴极,它与蒸发源之间加数百伏以至数千伏的高压电,放电气压为10~10-2帕。蒸发源通过热丝加热进行蒸发,部分蒸发分子与放电气体分子成一定比例,在强电场作用下激发电离并加速向衬底轰击,而大部分中性蒸发分子不经加速而到达衬底。用此法制造薄膜,淀积速率比溅射法为高,与衬底的粘附力又比蒸发法为强。
  参考书目
 G.K. Wehner,G.S.Anderson and L.Maisse,Handbook of Thin Film Technology, McGraw-Hill, New York,1970.

附件列表


1

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 粉末冶金制品。    下一篇 真空镀膜

标签

暂无标签

同义词

暂无同义词