钨钼百科  > 所属分类  > 
[1] 评论[0] 编辑

钨合金微合金化

钨合金微合金化研究

钨金的强化机制主要有固溶强化、弥散强化、沉淀强化和界面强化等。固溶强化的元素主要有Re, Me, Nb, Ta, Ir等。钨合金中的Mo, Ta, Re, Nb, Hf, V和Cr等元素具有与W相同的体心立方晶格;它们可以固溶于W,也可以在一定程度上固溶于粘结相中,从而达到对钨基重合金的固溶强化,其中Hf的强化作用最大,其次为Ta,Nb和Re。

弥散强化包括直接强化和间接强化,直接强化主要来源于位错与弥散颗粒的相互作用,而间接强化主要是由于高密度位错网组成的亚晶粒相互作用提高合金的强度。界面强化主要是优化晶界(提高晶界强度或减少杂质在晶界的偏聚),而且若在界面上形成固溶体,可增强界面结合力和提高材料强度。另外,由于具有良好的界面,粘结相可通过界面将应力传递给钨颗粒,可有效的减轻粘结相的承载力,使粘结相和基体协调变形,减少沿晶裂纹的发生,从而提要材料的强度。沉淀强化方法有抑制沉淀相析出强化,第二相析出强化和钨弥散强化3种。抑制沉淀相析出是改善和提高钨合金性能的有效方法,一般采用固溶+淬火的热处理工艺来避免沉淀相析出,同时抑制杂质元素在界面上偏聚,以获得较洁净的钨/基体界面。在W-Ni-Fe高密度合金中添加少量Co可增强基体相对钨颗粒的润湿性,使钨颗粒表面更加圆滑,更加有利于塑性变形,更能提高合金的钨颗粒与基体相之间的界面结合强度,从而提高合金的强度和延伸率。同时,加入的Co,在液相烧结的初期,优先与铁和镍形成熔点低、流动性好的共晶,很好的促进组分原子在液相中扩散,从而加速液相烧结的进程、细化合金的显微组织。刘志国等成功地制备了新型W-Ni-Fe-TiB2合金,并发现TiB2均匀分布于粘结相中,添加2%的TiB2的合金较未添加TiB2的合金相对密度和硬度都较高,可对材料的粘结相起强化作用。冯庆芬等则对La、Ce对93WniFe合金的动态拉伸性能进行了研究 ,发现这2种元素可提高钨合金的动态性能,并有固溶强化和界面净化作用。

钨合金的杂质元素包括H,O,C,N,P,S和Si等。由于这些元素的原子半径较小,在钨合金中有很强的扩散能力,因而比较容易在晶界、相界等能量较高的位置发生偏聚,甚至生成脆性相,从而降低钨合金的性能。在这些杂质元素中危害较大的是H,它主要分布在粘结相和钨/粘结相界面上导致氢脆,消除氢脆的主要方法是在保护气氢(N2,Ar)下退火,其中尤以真空热处理效果最好。P是对钨合金危害较大的另一种元素,因为P很容易偏析到钨/粘结相界面上使合金脆化,当P含量超过其在W相或粘结相的极限溶解度时将发生P的偏析和产生NiP2沉淀。与P伴生的另一种杂质是S,它也能偏析在W/粘结相的界面上,在93W-4.9Ni-2.1Fe合金中,当S含量达到0.01%时合金的冲击韧性明显下降。另外,S还可以同K和O形成化合物,聚集在气孔的内表面上。Si和Na是原料钨粉中的另外2种常见杂质元素,它们通常以SiO2和NaSiO3形式存在。Si和Na的掺杂使合金的密度、抗拉强度、延伸率、颈缩率等均明显下降,其在钨合金中可允许的极限含量为:Si,210×10-6;Na,150×10-6;大于此极限含量就会对合金性能产生很大的影响

附件列表


1

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 高密度钨合金穿甲弹    下一篇 钨合金变形强化

标签

暂无标签

同义词

暂无同义词